home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Pascal Super Library
/
Pascal Super Library (CW International)(1997).bin
/
MATH
/
MATH1
/
GD-LINF2.LIB
< prev
next >
Wrap
Text File
|
1985-04-03
|
2KB
|
79 lines
{ -> 220 }
procedure get_data(var t : ary; { independedt variable }
var p : ary; { dependent variable }
var nrow : integer); { length of vectors }
var i : integer;
begin
nrow:=10;
for i:=1 to nrow do
t[i]:=(i+6.0)*100.0;
p[1]:=1.0E-9; p[2]:=5.598E-8;
p[3]:=1.234E-6; p[4]:=1.507E-5;
p[5]:=1.138E-4; p[6]:=6.067E-4;
p[7]:=2.512E-3; p[8]:=8.337E-3;
p[9]:=2.371E-2; p[10]:=5.875E-2;
for i:=1 to nrow do
p[i]:=ln(p[i]) { take log data }
end; { procedure get_data }
procedure linfit(X, { independent variable }
y : ary; { dependent variable }
var y_calc : ary; { calculated dep. variable }
var resid : ary; { array of residuals }
var coef : arys; { coefficients }
var sig : arys; { error on coefficients }
nrow : integer; { length of ary }
var ncol : integer); { number of terms }
{ least-squares fit to nrow sets of x and y pairs of points }
{ Seperate procedure needed:
SQUARE -> form square coefficient matrix
GAUSSJ -> Gauus-Jordan elimination }
var xmatr : ary2; { data matrix }
a : ary2s; { coefficient matrix }
g : arys; { constant vector }
error : boolean;
i,j,nm : integer;
xi,yi,yc,srs,see,
sum_y,sum_y2 : real;
begin { procedure linfit }
ncol:=3; { number of terms }
for i:=1 to nrow do
begin { setup x matrix }
xi:=x[i];
xmatr[i,1]:=1.0; { first column }
xmatr[i,2]:=1.0/xi; { second column }
xmatr[i,3]:=ln(xi) { third column }
end;
square(xmatr,y,a,g,nrow,ncol);
gaussj(a,g,coef,ncol,error);
sum_y:=0.0;
sum_y2:=0.0;
srs:=0.0;
for i:=1 to nrow do
begin
yi:=y[i];
yc:=0.0;
for j:=1 to ncol do
yc:=yc+coef[j]*xmatr[i,j];
y_calc[i]:=yc;
resid[i]:=yc-yi;
srs:=srs+sqr(resid[i]);
sum_y:=sum_y+yi;
sum_y2:=sum_y2+yi*yi
end;
correl_coef:=sqrt(1.0-srs/(sum_y2-sqr(sum_y)/nrow));
if nrow=ncol then nm:=1
else nm:=nrow-ncol;
see:=sqrt(srs/nm);
for i:=1 to ncol do { errors on solution }
sig[i]:=see*sqrt(a[i,i])
end; { LINFIT }